Research Identifies Key Molecular Actions of Autoimmune, Inflammatory Diseases


An immunomodulatory cytokine interacts with its receptors differently than other cytokines.

Scientists have recently discovered a crucial underlying mechanism involved with autoimmune and inflammatory conditions, including psoriasis, rheumatoid arthritis, and Crohn's disease.

According to the results of a study published by Immunity, the pro-inflammatory activity of the IL-23 cytokine is contingent on the structural activation by its receptor, IL-23R. The immunomodulatory cytokine IL-23 is involved with numerous inflammatory diseases.

New cases of psoriasis, rheumatoid arthritis, inflammatory bowel diseases, and multiple sclerosis have been skyrocketing over the past few decades, with many millions affected by each condition. The prevalence of these conditions made targeting IL-23 a focus of novel treatments, according to the authors.

Although IL-23 was discovered years ago, the structural and molecular mechanisms for its pro-inflammatory activity were unclear.

The study discusses how IL-23 interacts with its receptors. Cytokines typically activate its receptors, but the newly-discovered interaction appears to be the opposite, according to the study.

"We were surprised to find that both IL-23 and its receptor change drastically to create an intimate cytokine-receptor interface,” said lead researcher Savvas Savvides, PhD. “In this interface, the receptor uses a functional hotspot on IL-23, enabling it to recruit an essential co-receptor for pro-inflammatory signaling.”

The researchers analyzed integrative structural biology and combined strategies in order to describe protein structures in atomic detail for the first time, according to the study. They also evaluated biochemical, biophysical, cellular, and in vivo studies.

“The binding site of the co-receptor on IL-23 also emerged as an unexpected finding. What we have now discovered about the pro-inflammatory complex mediated by IL-23 appears to be a new paradigm in the field,” Dr Savvides said.

These findings may lead to novel therapies for autoimmune and inflammatory diseases that target the IL-23 receptor.

“These initial research milestones from our program on IL-23 will be the cornerstone for further research in our own labs and elsewhere,” Dr Savvides said. “After all, many questions still remain unanswered. For instance: how does IL-23 bind with other possible co-receptors? Furthermore, our insights are expected to fuel the development of new therapeutic strategies against IL-23."

Related Videos
male pharmacist using digital tablet during inventory in pharmacy | Image Credit: sofiko14 -
Pharmacist holding medicine box in pharmacy drugstore. | Image Credit: I Viewfinder -
Pharmacy Drugstore Checkout Cashier Counter | Image Credit: Gorodenkoff -
Medicine tablets on counting tray with counting spatula at pharmacy | Image Credit: sutlafk -
Capsules medicine and white medicine bottles on table | Image Credit: Satawat -
Human cell or Embryonic stem cell microscope background | Image Credit: Anusorn -
Concept of health care, pharmaceutical business, drug prices, pharmacy, medicine and economics | Image Credit: Oleg -
Biosimilar pharmaceutical drug bottle on blue background. | Image Credit: Carl -
Pharmaceutical manufacture background with glass bottles with clear liquid on automatic conveyor line. | Image Credit: wacomka -
Bottle and scattered pills on color background, top view | Image Credit: New Africa -
© 2024 MJH Life Sciences

All rights reserved.