Interactions Between Tumor Genes, Microenvironment Impact Treatment Response in Multiple Myeloma


The study findings provide the first in-depth look at the relationship between chromosomal changes in tumor cells and immune components of the tumor microenvironment.

Investigators at the University of Miami Miller School of Medicine found that the interactions between tumor cells and immune components of the microenvironment can influence treatment responses and outcomes in patients who are newly diagnosed with multiple myeloma and undergoing combination treatments that include targeted immunotherapy. Although immunotherapies targeting the molecule CD38 are particularly effective in improving survival rates, multiple myeloma either continues to respond properly, or progresses prematurely in 30% to 50% of newly diagnosed patients.

Health care professional working in a lab

Image credit: Elnur |

Harmful changes that occur in the genetic makeup of tumor cells are sometimes driven by the tumors themselves; however, others may occur as immunotherapies change the treatment landscape, which creates a moving target for researchers. Newly diagnosed patients are often treated with therapies that influence the immune microenvironment.

“Since the introduction of advanced, targeted immunotherapy regimens, there has been a pressing need to better understand the tumor genomic and immune interactions that drive resistance to combination treatment approaches,” said Carl Ola Landgren, MD, hematologist/oncologist, chief of the Division of Myeloma, and director of the Myeloma Institute at Sylvester, in a press release. “This study adds significant information that will result in better clinical trials and more effective therapies for patients with high-risk disease.”

In this study, researchers collected bone marrow samples from 49 enrolled patients who had received a combination drug therapy that included daratumumab, a CD38-targeting monoclonal antibody. Whole genome sequencing was performed to look for chromosomal changes in tumor cells that could increase the risk for treatment resistance. In addition, single-cell RNA sequencing was performed to analyze tumor microenvironments.

The investigators identified specific gene mutations and changes that influenced clinical outcomes. Further, they described immune-related factors and events that predict sustained treatment effects with prolonged survival.

“We found that stronger treatment responses and prolonged progression-free survival were driven by a complex interplay between tumor genomic features and immune microenvironment changes,” said Francesco Maura, MD, assistant professor and co-principal investigator of the Myeloma Computational and Translational Laboratory. “Interestingly, we found that with the introduction of immunotherapy, some historically important genomic prognostic factors lost some of their power to predict outcome and a number of genomic drivers and microenvironmental features emerged as being of importance.”


University of Miami Miller School of Medicine. Sylvester research shows how interactions between tumor genes and microenvironment influence treatment response in multiple myeloma. News release. November 9, 2023. Accessed November 9, 2023. 

Related Videos
palliative and hospice care/ Image Credits: © David Pereiras -
cancer pain management | Image Credits: © Burlingham -
multiple myeloma clinical trial daratumumab/ Image Credits: © Dragana Gordic -
multiple myeloma clinical trial/Image Credits: © Studio Romantic -
3d rendered illustration of lung cancer 3D illustration - Image credit:  appledesign |
Video 9 - "Unmet Needs in Relapsed or Refractory Multiple Myeloma"
Video 8 - "Bispecific Antibodies Versus CAR T-Cell Therapy for RRMM in the Community Oncology Setting"
Video 7 - "Role of Pharmacists in Operationalizing Bispecific Antibodies"
Medicine tablets on counting tray with counting spatula at pharmacy | Image Credit: sutlafk -
© 2024 MJH Life Sciences

All rights reserved.