Evaluating the Long-Term Impact of Cardiac Regenerative Therapies

Article

Researchers explore computational model to explore treatments for myocardial infarction.

A computational model has been developed to gain a better understanding of the mechanisms of cardiac regenerative therapies.

Myocardial infarction (MI) is the most common form of heart disease, and results in the permanent loss of contractile function in the infarcted region. Recently, cardiac regenerative therapies have piqued the interest of researchers as a potential means to restore the contractile function in these patients.

In order to gain more knowledge on these therapies, a team of researchers from MSU, Simula Research Laboratory, and ETH Zurich developed the new model. Current heart models are only able to simulate the immediate effects of therapy; however, the newly developed model has the ability to simulate the long-term effects of these therapies.

Researchers found the results from the model are consistent with the findings in other clinical studies, and the new model is currently being used to investigate more treatment parameters to optimize therapy.

Related Videos
Medical team -- Image credit: Flamingo Images | stock.adobe.com
Young depressed woman talking to lady psychologist during session, mental health - Image credit: motortion | stock.adobe.com
man taking opioid pills sitting at a dark table - Image credit: rohane | stock.adobe.com
schizophrenic man - mental disorder - Image credit: Andreza | stock.adobe.com
Aimee Keegan, PharmD, BCOP, a clinical pharmacist
A panel of 3 experts on hepatic encephalopathy
A panel of 3 experts on hepatic encephalopathy
© 2024 MJH Life Sciences

All rights reserved.