Article

Evaluating the Long-Term Impact of Cardiac Regenerative Therapies

Researchers explore computational model to explore treatments for myocardial infarction.

A computational model has been developed to gain a better understanding of the mechanisms of cardiac regenerative therapies.

Myocardial infarction (MI) is the most common form of heart disease, and results in the permanent loss of contractile function in the infarcted region. Recently, cardiac regenerative therapies have piqued the interest of researchers as a potential means to restore the contractile function in these patients.

In order to gain more knowledge on these therapies, a team of researchers from MSU, Simula Research Laboratory, and ETH Zurich developed the new model. Current heart models are only able to simulate the immediate effects of therapy; however, the newly developed model has the ability to simulate the long-term effects of these therapies.

Researchers found the results from the model are consistent with the findings in other clinical studies, and the new model is currently being used to investigate more treatment parameters to optimize therapy.

Related Videos
Pharmacists, Education, Advocacy, Opioid Awareness Month | Image Credit: Jacob Lund - stock.adobe.com
3 KOLs are featured in this series.
3 KOLs are featured in this series.
Pharmacy technician working in a pharmacy -- Image credit: sofiko14 | stock.adobe.com
Team of pharmacists -- Image credit: Jacob Lund | stock.adobe.com
TRUST-I and TRUST-II Trials Show Promising Results for Taletrectinib in ROS1+ NSCLC
Pharmacist assists senior woman in buying medicine in pharmacy - Image credit: Drazen | stock.adobe.com
World Standards Week 2024: US Pharmacopeia’s Achievements and Future Focus in Pharmacy Standards
Pharmacists working in a pharmacy -- Image credit: Drazen | stock.adobe.com