Pseudomonas aeruginosa (P. aeruginosa) clinical isolates with a difficult-to-treat resistance (DTR) phenotyperepresent a more homogenous group with limited treatment options compared to isolatesexhibiting a multi-drug resistant (MDR) phenotype.1 DTR P. aeruginosa is defined asresistance to all first line agents, specifically β-lactams and fluoroquinolones antimicrobials.2 In the Infectious Disease Society of America (IDSA) guidance document, DTR is defined as P. aeruginosa resistant to piperacillin/tazobactam, ceftazidime, cefepime, aztreonam, meropenem, imipenem/cilistatin, ciprofloxacin, and levofloxacin.3
Resistance
DTR P. aeruginosa usually develops multiple resistance mechanisms, including decreased expression of outer membrane porins; amino acid substitutions or deletions to penicillin-binding domains or Pseudomonas-derived cephalosporinase (AmpC) enzyme; upregulation of efflux pumps; mutation of penicillin-binding protein (PBP) targets; and expression of expanded β-lactamase enzymes.4-6 Carbapenemase production is not a resistance mechanism seen in P. aeruginosa.
The IDSA guideline encourages all microbiology laboratories to perform antimicrobial sensitivity testing for MDR and DTR P. aeruginosa isolates against the new β-lactam antimicrobials: ceftolazane/tazobactam (Zerbaxa; Merck), ceftazidime/avibactam (Avycaz; AbbVie), imipenem/cilastatin/relebactam (Recarbrio; Merck), and cefidericol (Fetroja; Shionogi).3,6
Based on clinical trials for uncomplicated urinary tract infections (UTIs), the preferred agents are ceftolazone/tazobactam, ceftazidime/avibactam, imipenem/cilastatin/relebactam, and cefiderocol. Alternative agents would be single dose tobramycin or amikacin.7-11 Also based on clinical trial data, the same new β-lactam agents preferred for uUTI are recommended for use in complicated UTIs with daily tobramycin or amikacin as alternatives.7-10 Based on in-vitro activity and clinical trial data, ceftolazane/tazobactam, ceftazidime/avibactam, and imipenem/cilastatin/relebactam are the preferred agents for treatment of infections outside the urinary tract, with cefiderocol as an alternative.12-22
There are no clinical trials that compare the newer β-lactam agents (ceftolazane/tazobactam vs ceftazidime/avibactam). There are available clinical trials comparing the newer β-lactam agents with older agents (ceftolazane/tazobactam vs polymyxin) for MDR P. aeruginosa but not DTR P. aeruginosa.
Rationale
Ceftolazane/tazobactam, ceftazidime/avibactam, imipenem/cilastatin/relebactam, and cefiderocol are preferred treatment options based on in vitro activity, observational studies, and clinical trials showing noninferiority of these agents vs common comparator agents for the treatment of both uncomplicated and complicated UTIs.7-10 Tobramycin and amikacin were chosen as alternative agents because aminoglycosides are renally eliminated in the active form with minimal toxicity. However, there is a lack of robust clinical trials.21 Most patients in the clinical trials did not have DTR P. aeruginosa infections.
One study compared outcomes of patients with MDR P.aeruginosa receiving ceftolazane/tazobactam vs polymyxin or aminoglycoside therapy. The results showed 81% of patients receiving ceftolazane/tazobactam had a favorable outcome compared to 61% receiving polymyxin or aminoglycoside-based therapy.24 Other studies involved a limited number of patients and included those with MDR P. aeruginosa and not DTR, or had limitations.25,26
Emergence of Resistance to DTR P. aeruginosa
Ceftazidime/avibactam and ceftolazane/tazobactam resistance is due to amino acid substitutions, insertions, or deletions in the Pseudomonas-derived cephalosporinase.24-26 Resistance to imipenem/cilastatin/relebactam is related to loss of the outer membrane protein OprD and over-expression of efflux pumps.27-29 Deficiency of the outer membrane protein OprD confers P. aeruginosa a basal level of resistance to carbapenems, especially imipenem/cilastatin.
There are multiple resistance mechanisms for cefiderocol, including mutations in the modification of the PBP3.30-35 Ceftolazane/tazobactam and ceftazidime/avibactam appear to be at greater risk of resistance to P. aeruginosa partially due to being used more often in clinical practice.3 There is cross resistance between ceftolazane/tazobactam and ceftazidime/avibactam due to structural similarities.36
In a study by Tamma et al, 78 patients with DTR P. aeruginosa who were treated with ceftolazane/tazobactam had subsequent DTR isolates after the start of therapy.37 Half of the subsequent isolates were no longer sensitive to ceftolazane/tazobactam after a median duration of 15 days of therapy. Most patients with an original isolate sensitive to ceftazidime/avibactam had subsequent isolates displaying resistance to ceftazidime/avibactam after being exposed to ceftolazane/tazobactam and no prior exposure to ceftazidime/avibactam.37 There are limited data for emergence of resistance to imipenem/cilastatin/relebactam or cefiderocol.9,28,38
Antibiotic susceptibility testing should be done for the 4 new β-lactam agents when a patient previously infected with DTR P. aeruginosa presents with signs and symptoms of sepsis, suggesting a new or relapsed infection. If a patient who was recently treated with ceftolazane/tazobactam or ceftazidime/ avibactam presents with signs and symptoms of a recurrent infection, imipenem/cilastatin/relecbactam cefidericol should be used initially, especially if previous antibiotic susceptibility testing proved sensitive for one of these agents, until antibiotic susceptibility testing results are available for all 4 of the new β-lactam agents.3
REFERENCES
1. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-281. doi:10.1111/j.1469-0691.2011.03570-x
2. Kadri SS, Adjemian J, Lai YL, et al. Difficult-to-treat resistance in gram-negative bacteremia at 173 US hospitals: retrospective cohort analysis of prevalence, predictors, and outcome of resistance to all first-line agents. Clin Infect Dis. 2018;67(12):1803-1814. doi:10.1093/cid/ciy378
3. Tamma PD, Heil EL, Justo JA, Mathers AJ, Satlin MJ, Bonomo RA. Infectious Diseases Society of America 2024 guidance on the treatment of antimicrobial-resistant gram-negative infections. Clin Infect Dis. 2024;ciae403. doi:10.1093/cid.ciae403
4. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-192. doi:10.1016/j.biotechadv.2018.11.013
5. Glen KA, Lamont IL. Β-lactam resistance in Pseudomonas aeruginosa: current status, future prospects. Pathogens. 2021;10(12):1638. doi:10.3390/pathogens10121638
6. Carmeli Y, Armstrong J, Laud PJ, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis. 2016;16(6):661-673. doi:10.1016/S1473-3099(16)30004-4
7. Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018;18(12):1319-1328. doi:10.1016/S1473-3099(18)30554-1
8. Sims M, Mariyanovski V, McLeroth P, et al. Prospective-randomized, double-blind, phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactan with imipenem/cilastatin alone in patients with complicated urinary tract infections. J Antimicrob Chemother. 2017;72(9):2616-2626. doi:10.1093/jac/dkx139
9. Bassetti M, Echols R, Matsunaga Y, et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): a randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect Dis. 2021;21(2):226-240. doi:10.1016/S1473-3099(20)30796-9
10. Wagenlehner FM, Umeh O, Steenbergen J, Yuan G, Darouiche RO. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet. 2015;385(9981):1949-1956. doi:10.1016/S0140-6736(14)62220-0
11. Torres A, Zhong N, Pachl J, et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect Dis. 2018;18(3):285-295. doi:10.1016/S1473-3099(17)30747-8
12. Kollef MH, Nováček M, Kivistik U, et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): a randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2019;19(12):1299-1311. doi:10.1016/S1473-3099(19)30403-7
13. Motsch J, de Oliveira CM, Stus V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin Infect Dis. 2020;70(9):1799-1808. doi:10.1093/cid.ciz530
14. Shortridge D, Pfaller MA, Castanheira M, Flamm RK. Antimicrobial activity of ceftolozane-tazobactam tested against Enterobacteriaceae and Pseudomonas aeruginosa collected from patients with bloodstream infections isolated in United States hospitals (2013-2015) as part of the Program to Assess Ceftolozane-Tazobactam Susceptibility (PACTS) surveillance program. Diagn Microbiol Infect Dis. 2018;92(2):158-163. doi:10.1016/j.diagmicrobio.2018.05.011
15. Sader HS, Flamm RK, Carvalhaes CG, Castanheira M. Comparison of ceftazidime-avibactam and ceftolozane-tazobactam in vitro activities when tested against gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017-2018). Diagn Microbiol Infect Dis. 2020;96(3):114833. doi:10.1016/j.diagmicrobio.2019.05.005
16. Mazuski JE, Gasink LB, Armstrong J, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis. 2016;62(11):1380-1389. doi:10.1093/cid.ciw133
17. Lucasti C, Hershberger E, Miller B, et al. Multicenter, double-blind, randomized, phase II trial to assess the safety and efficacy of ceftolozane-tazobactam plus metronidazole compared with meropenem in adult patients with complicated intra-abdominal infections. Antimicrob Agents Chemother. 2014;58(9):5350-7
18. Lucasti C, Vasile L, Sandesc D, et al. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob Agents Chemother. 2016;60(10):6234-6243. doi:10.1128/AAC.00633-16
19. Titov I, Wunderink RG, Roquilly A, et al. A randomized, double-blind, multicenter trial comparing efficacy and safety of imipenem/cilastatin/relebactam versus piperacillin/tazobactam in adults with hospital-acquired or ventilator-associated bacterial pneumonia (RESTORE-IMI 2 study). Clin Infect Dis. 2021;73(11):e4539-e4548. doi:10.1093/cid.ciaa803
20. Solomkin J, Hershberger E, Miller B, et al. Ceftolozane/tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin Infect Dis. 2015;60(10):1462-1471. doi:10.1093/cid.civ097
21. Goodlet KJ, Benhalima FZ, Nailor MD. A systematic review of single-dose aminoglycoside therapy for urinary tract infection: is it time to resurrect an old strategy? Antimicrob Agents Chemother. 2018;63(1):e02165-18. doi:10.1128/AAC.02165-18
22. Stone GG, Newell P, Gasink LB, et al. Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam phase III clinical trial programme. J Antimicrob Chemother. 2018;73(9):2519-2523. doi:10.1093/jac/dky204
23. Almangour TA, Ghonem L, Alassiri D, et al. Ceftolozane-tazobactam versus ceftazidime-avibactam for the treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa: a multicenter cohort study. Antimicrob Agents Chemother. 2023;67(8):e0040523. doi:10.1128/aac.00405-23
24. Skoglund E, Abodakpi H, Rios R, et al. In Vivo resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa arising by AmpC- and non-AmpC-mediated pathways. Case Rep Infect Dis. 2018;2018:9095203. doi:10.1155/2018/9095203
25. Berrazeg M, Jeannot K, Enguéné, et al. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob Agents Chemother. 2015;59(10):5248-6255. doi:10.1128/AAC.00825-15
26. Fraile-Ribot PA, Cabot G, Mulet X, et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73(3):658-663. doi:10.1093/jac/dkx424
27. Lapuebla A, Abdallah M, Olafisoye O, et al. Activity of imipenem with relebactam against gram-negative pathogens from New York City. Antimicrob Agents Chemother. 2015;59(8):5029-5031. doi:10.1128/AAC.00830-15
28. Shields RK, Stellfox ME, Kline EG, Samanta P, Van Tyne D. Evolution of imipenem-relebactam resistance following treatment of multidrug-resistance Pseudomonas aeruginosa pneumonia. Clin Infect Dis. 2022;75(4):710-714. doi:10.1093/cid.ciac097
29. Gomis-Font MA, Cabot G, López-Argüello S, et al. Comparative analysis of in vitro dynamics and mechanisms of ceftolozane/tazobactam and imipenem/relebactam resistance development in Pseudomonas aeruginosa XDR high-risk clones. J Antimicrob Chemother. 2022;77(4):957-968. doi:10.1093/jac.dkab496
30. Ito A, Nishikawa T, Ishii R, et al. Mechanism of cefiderocol high MIC mutants obtained in non-clinical FoR studies. Open Forum Infect Dis. 2018;5(Suppl 1):S251. doi:10.1093/ofid.ofy210.703
31. Kohira N, Nakamura R, Ito A, Nishikawa T, Ota M, Sato T. Resistance acquisition studies of cefiderocol by serial passage and in vitro pharmacodynamic model under human simulated exposure. Poster presented at: American Society of Microbiology Annual Meeting. Atlanta, GA. June 2018.
32. Kohira N, Ito A, Ota M, et al. Frequency of resistance acquisition and resistance mechanisms to cefiderocol. Poster presented at: American Society of Microbiology Annual Meeting. Atlanta, GA. June 2018.
33. Streling AP, Al Obaidi MM, Lainhart WD, et al. Evolution of cefiderocol non-susceptibility in Pseudomonas aeruginosa in a patient without previous exposure to the antibiotic. Clin Infect Dis. 2021;73(11):e4472-e4474. doi:10.1093/cid/ciaa1909
34. Simner PJ, Beisken S, Bergman Y, Posch AE, Cosgrove SE, Tamma PD. Cefiderocol activity against clinical Pseudomonas aeruginosa isolates exhibiting ceftolozane-tazobactam resistance. Open Forum Infect Dis. 2021;8(7):ofab311. doi:10.1093/ofid/ofab311
35. Gomis-Font MA, Sastre-Femenia MA, Taltavull B, Cabot G, Oliver A. In vitro dynamics and mechanisms of cefiderocol resistance development in wild-type, mutator and XDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2023;78(7):1785-1794. doi:10.1093/jac/dkad172
36. Tsai YV, Bookstaver PB, Kohn J, et al. The prevalence of gram-negative bacteria with difficult-to-treat resistance and utilization of novel β-lactan antibiotics in the southeastern United States. Antimicrob Steward Healthc Epidemiol. 2024;4(1):e35. doi:10.1017/ash.2024.26
37. Tamma PD, Beisken S, Bergman Y, et al. Modifiable risk factors for the emergence of ceftolozane-tazobactam resistance. Clin Infect Dis. 2021;73(11):e4599. doi:10.1093/cid/ciaa1306
38. Shields RK, Kline EG, Squires KM, Van Tyne D, Doi Y. In vitro activity of cefiderocol against Pseudomonas aeruginosa demonstrating evolved resistance to novel β-lactam/β-lactamase inhibitors. JAC Antimicrob Resist. 2023;5(5):dlad107. doi:10.1093/jacamr/dlad107